	科目	電気数学 II (Electrical Mathematics II)				
担当教員		赤松 浩 教授				
対象学年等		電気工学科·3年·後期·必修·1単位【講義】(学修単位I)				
学習·教育目標		A1(50%), A4-E1(50%)				
授業の 概要と方針		電気工学の基礎工学である回路工学や電磁気学で使用する数学として,2年生の電気数学Iに加え,微分方程式,ラプラス変換などについて学ぶ.数学としての分野を網羅することは時間的に困難であるので,電気工学で頻繁に使用する範囲に限定して学ぶ.				
		到 達 目 標	達成	度	到達目標別の評価方法と基準	
1	【A1】線形の2階までの微分方程式が解けるようになる.				電気工学科専門教科で取り扱う範囲の線形の2階までの微分方程式の問題 を解けるかを,演習および後期中間試験で評価する.	
2	【A4-E1】回路の過渡解析に必要な微分方程式が解けるようにラプラス変換の計算(ラブラス変換,逆変換)が出来るようになる.				ラプラス変換の計算(ラプラス変換,逆変換)問題をを解けるかを,演習および 後期定期試験で評価する.	
3						
4						
5						
6						
7						
8						
9						
10						
総合評価		成績は,試験75% 演習25% として評価する.総合評価100点満点で60点以上を合格とする.試験成績は後期中間試験と後期定期試験の平均点とする.担当教員の判断により再試験を実施することがある.				
テキスト		「新 応用数学」: 佐藤 志保 他著(大日本図書出版社)				
参考書		「電気回路基礎ノート」:森真作(コロナ社) 「大学1年生のための電気数学」:高木,猪原,佐藤,高橋,向川著(森北出版)				
関連科目		2年生電気数学I				
履修上の 注意事項		電気工学において必要な数学的知識を修得することを目的としているため,積極的に理解するように努力すること.自分の力で暗記すべき項目はしっかりと暗記し,計算すべき項目はしっかりと計算していくという心構えが必要である.				

	授業計画(電気数学 II)						
	テーマ	内容(目標・準備など)					
1	2階までの徽分方程式(1)	一般的な微分方程式の解法(変数分離型,同次型,特性方程式)を紹介する.特性方程式を用いる解法における余関数,特殊解の求め方を解説する.					
2	2階までの微分方程式(2)	特性方程式を用いる解法を使って2階微分方程式を解く方法を解説する.					
3	2階までの微分方程式(3)	電気回路における2階微分方程式の解の種類(過減衰,臨界減衰,減衰振動,単振動)を解説する.					
4	2階までの微分方程式(4)	授業計画1-4の内容について練習問題を解く.					
5	ラプラス変換の導入(1)	ラプラス変換についてその必要性,用途を説明する.覚えるべき公式を解説する.					
6	ラプラス変換の導入(2)	前週に引き続き,ラプラス変換の公式を解説する.					
7	ラプラス変換の練習	授業計画5-6の内容について練習問題を解く.					
8	中間試験	授業計画1-7の内容について中間試験を行う.					
9	中間試験解説と部分分数分解	中間試験について解説し,ラブラス変換を用いた微分方程式の解法で必要となる部分分数分解について解説する.					
10	逆ラプラス変換	与えられた複素関数を部分分数分解して,ラプラス変換表にあう形に変形し,逆ラプラス変換する方法について解説する.					
11	ラプラス変換による微分方程式の解法	微分方程式をラプラス変換する方法について説明し,その結果により解を求め,最後に逆ラプラス変換することによって,微分方程式の解が求まることを解説する.					
12	様々な微分方程式の解法	初期条件ではなく、境界条件が与えられた際の微分方程式の解法、連立微分方程式の解法などを解説する.					
13	回路における微分方程式(1)	RL回路,RC回路の動作を,微分方程式に書き下し,ラブラス変換することでその解を求める一連の流れを解説する.					
14	回路における微分方程式(2)	RLC回路の動作を,微分方程式に書き下し,ラブラス変換することでその解を求める一連の流れを解説する.					
15	ラプラス変換と回路における微分方程式の練習	授業計画9-14の内容について練習問題を解く.					
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
備考	後期中間試験および後期定期試験を実施する.						