	科目	電子回路II (Electronic Circuit II)			
担	旦当教員	小矢 美晴 教授			
対象学年等		電子工学科·4年·後期·必修·2単位【講義】(学修単位II)			
学習·教育目標		租于工于科·44-· 该别·必修·2年位【語我】(于修毕位Ⅱ) A4-D1(100%)			
字宮・教育日標 授業の 概要と方針		エレクトロニクスの技術革新は広範囲かつ急速である.しかし基礎となるべきことを十分理解しておくことにより,新しい素子・回路・技術に対処することが可能である.本教科では電子回路Iに引き続き,電子回路の基本的な考え方と設計手法を身につけさせる.			
		到 達 目 標	達成度	到達目標別の評価方法と基準	
1	【A4-D1】A級電力増幅回路,B級電力増幅回路について理解できる.			A級電力増幅回路,B級電力増幅回路について理解しているかをレポートと小テスト,中間試験で評価する.	
2	【A4-D1】同調増幅回路が理解でき,基本的な設計ができる.			同調増幅回路が理解できており,基本的な設計ができるかをレポートと小テスト,中間試験で評価する.	
3	【A4-D1】演算増幅器を用いた演算回路の設計ができる.			演算増幅器を用いた演算回路の設計ができるかをレポートと小テスト,中間試験で評価する.	
4	[A4-D1]発振回路の発振条件を導出できる.			発振回路の発振条件を導出できるかをレポートと小テスト,定期試験で評価する.	
5	【A4-D1】振幅変調回路と復調回路の動作原理が理解できる.			振幅変調回路と復調回路の動作原理が理解できるかをレポートと小テスト, 定期試験で評価する.	
6	【A4-D1】周波数変調回路と復調回路の動作原理が理解できる.			周波数変調回路と復調回路の動作原理が理解できるかをレポートと小テスト,定期試験で評価する.	
7					
8					
9					
10					
総合評価		成績は,試験80% レポート10% 小テスト10% として評価する.なお,試験成績は2回(中間・定期)の試験の平均点とする.100点満点で60点以上を合格とする.			
テキスト		「アナログ電子回路」大類重範(日本理工出版会)			
参考書		「演習 電子回路」桜庭一郎,佐々木正規(森北出版) 「テーマ別 電子回路例題と演習」島田一雄,南任靖雄(工学図書) 「アナログ電子回路」藤井信生(オーム社)			
関連科目		D2 電気回路I,D3 電気回路II,D3 電子デバイス,D4 電子回路I			
履修上の 注意事項		電気回路I,電気回路II,電子デバイス,電子回路Iの内容を修得していることを前提とする.また,D5の通信実験にも関連するため,科目間の連携を重視して履修すること.			

授業計画(電子回路Ⅱ)				
	テーマ	内容(目標・準備など)		
1	電力增幅回路(1)	トランジスタの代表的な大信号増幅回路であるA級電力増幅回路がある.これらの原理について理解し,説明できる.		
2	電力増幅回路(2)	大信号増幅回路にはB級ブッシュブル電力増幅回路もある.B級ブッシュブル電力増幅回路は電力効率は良いがクロスオーバ ひずみが生じる.これらの原理について理解し,説明できる.		
3	LC並列共振回路	特定の周波数のみを増幅する回路(周波数選択回路)について理解し,説明できる.		
4	単同調増幅回路・複同調増幅回路・スタガ同調回路	1組の共振回路を負荷にもつ周波数選択増幅回路について説明し、理解できる。また、2組の共振回路を負荷にもつ周波数選択増幅回路について説明し、理解できる。広範囲の周波数選択性をもつスタガ同調回路についても理解し、説明できる。		
5	理想演算增幅器	演算増幅器は別名オペアンプとも呼ばれ,入力インピーダンスと差動利得が非常に大きい差動増幅回路である.これらを理解し,説明できる.		
6	演算増幅器の基本回路	演算増幅器の基本回路には反転増幅回路と非反転増幅回路がある。これらを理解し、説明できる。また,演算増幅器を用いた増幅回路の利得と帯域幅には積が一定という関係がある。これらを理解し,説明できる。		
7	演算増幅器の線形演算回路への応用	演算増幅器を用いた加算,減算,積分などの回路を理解し,説明できる.また,演算増幅器を用いた非線形回路を理解し,説明できる.		
8	中間試験	1週目~7週目の内容について中間試験を実施する.		
9	中間試験の返却と発振回路の原理および発振条件	中間試験の返却および問題の解説を行う.また,発振回路の原理について理解し,説明できる.発振回路は正帰還回路のループ 利得を1以上にすることと,位相条件から発振周波数を決定することができる.これらについて理解し,説明できる.		
10	高周波LC発振回路	高周波発振回路の同調形発振回路を理解し、説明できる、高周波発振回路の三素子形発振回路を理解し、説明できる。		
11	低周波RC発振回路	低周波発振回路の移相形発振回路を理解し、説明できる.低周波発振回路のウィーンブリッヂ発振回路を理解し、説明できる.		
12	水晶発振回路	高周波発振回路で高精度に発振が行える回路の水晶発振回路を理解し、説明できる.		
13	AMとFMについて	情報を正弦波の振幅に乗せる変調を振幅変調(AM)と呼ぶ、振幅変調の深さを表す指標として変調度がある。また,情報を正弦波の周波数や位相に乗せる変調を周波数変調(FM)及び位相変調(PM)と呼ぶ、これらを理解し,説明できる。		
14	AMの変復調回路	振幅変調を行う回路には平衡変調回路やトランジスタの非線形性による振幅変調回路がある.振幅変調波の復調回路には包絡線検波回路等がある.これらを理解し,説明できる.		
15	FMの変復調回路	情報を正弦波の周波数に乗せる変調を周波数変調(FM)と呼ぶ、周波数変調を行う回路にはリアクタンストランジスタによる周波数変調回路や可変容量ダイオードによる周波数変調回路がある.また,FM波をAM波に変換することでFM波の復調信号を得る回路・原理を理解し,説明できる.		
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				
/±	後期中間試験および後期定期試験を実施する。			

後期中間試験および後期定期試験を実施する。 本科目の修得には、30 時間の授業の受講と 60 時間の事前・事後の自己学習が必要である.事前学習では、次回の授業に関する部分のテキストを閲覧し,各自で内容を理解しておくこと.事後学習では,レボート課題などを用いて授業の復習を行い,次の授業で行う小テストにむけて理解度を深めておくこと.また,指定日までにレボートを提出すること.