	科目	半導体工学 (Semiconductor Engineering)		种户间立上来向寻导门于权 2023年及2771A	
担当教員		而 勒什· 教授			
担ヨ教具		西 敬生 教授			
対象学年等		電子工学科·4年·通年·必修·2単位【講義】(学修単位III)			
学習·教育目標					
	授業の 提要と方針	の基礎から学ぶとともに,ダイオードやトランジスタ	なに代表	.この半導体を,エネルギバンドや電子輸送現象などの固体物理される半導体デバイスとして,応用面からも深く理解できるよう学むかない桁のものばかりであるため,演習などで比較検討すること	
		到 達 目 標	達成度	到達目標別の評価方法と基準	
1	【A4-D2】半導 できる.	体という物質の結晶構造やその特性の概要について説明		半導体とはどのような性質をもった物質かを問うことをレポートおよび前期中間試験の中で行い評価する.	
2	【A4-D2】金属性的に説明で	4-D2]金属,半導体,絶縁体の抵抗率をバンド構造の違いなどから定的に説明できる.		グラフや図を使って3つの違いを説明する問題をレポートおよび前期中間試験の中で行い評価する.	
3	【A4-D2】半導体中のキャリア密度の導出や,状態密度,占有確率との関係について説明できる.			キャリア密度の式や状態密度,占有確率の意味や実際例から値を計算させる問題をレポートおよび前期定期試験で出題することで評価する.	
4	【A4-D2】ドリフト電流(オームの法則)や拡散電流(フィックの法則)がわかり,抵抗率と移動度やキャリア密度の関係がわかる.			物質中のオームの法則やキャリアの拡散による拡散電流の式を説明させる問題や,実際例から値を計算させたりする問題を前期定期試験で出題して評価する.	
5	[A4-D2]pn接合の整流性やその起源を,エネルギバンド図や文章で説明できる.			pn接合の整流性をエネルギバンド図で説明させたり,拡散電位の起源を説明させる問題を後期中間試験で出題し,評価する.	
6	【A4-D2】pn指数式から見積	-D2]pn接合の空乏層幅や静電容量を,不純物密度などの諸条件と から見積もることができる.		pn接合の接合状態によって空乏層幅や容量を導出させる問題をレポートおよび後期中間試験で出題し,評価する.	
7		【A4-D2】MOS構造の周波数特性やMOS-FETの短チャネル効果について説明できる.		MOS構造についてエネルギバンド図や構造図,周波数特性のグラフなどを用いて説明する問題や,MOS-FETの短チャネル効果について説明させる問題を後期定期試験で出題し評価する.	
8					
9					
10					
総合評価		成績は,試験90% レポート10% として評価する.100点満点中60点以上を合格とする.4回の試験の平均を試験点とする.また,各試験において再試験を実施する場合は,70点以上で合格とし,当該試験の点数を60点とする.			
テキスト		「半導体デバイス」: 松波弘之, 吉本昌広(共立出版)			
参考書		「半導体デバイス-基礎理論とプロセス技術 第2版」:S.M. ジィー (産業図書) 「応用物性」:佐藤勝昭(オーム社) 「半導体工学 第3版 -半導体物性の基礎-」:高橋清(森北出版) 「電子情報通信レクチャーシリーズ A-9 電子物性とデバイス」:益一哉・天川修平(コロナ社)			
関連科目		電子デバイス(3年),光エレクトロニクス(5年)			
履修上の 注意事項		毎回の授業に電卓を持参すること.			

授業計画(半導体工学)					
テーマ 内容(目標・準備など)					
1	半導体の電子構造:半導体材料,結晶構造,不完全性	金属や半導体、セラミックスなど材料の分類、単結晶や多結晶、非晶質などの固体の分類、ダイヤモンド構造、閃亜鉛鉱構造という結晶構造による分類や結晶の不完全性について考える.			
2	半導体の電子構造:エネルギバンド構造,エネルギ準位	一原子の中,そして固体の中の電子がとるエネルギ準位について考える.このエネルギ準位から形成されるバンド構造,また電子の存在が許されない禁制帯について発展させる.予習は教科書pp.5~7をよく読み,式(1.1)を理解してくること.			
3	半導体の電子構造:結晶中の電子	前回のバンド構造を使って金属,半導体,絶縁体を描写し違いを考える.また"遷移"という言葉の意味や,禁制帯幅が物質固有のもので,禁制帯での電子遷移により正孔が生じることなどについて考える.予習はpp.7~10をよく読むこと.			
4	半導体の電子構造:状態密度と占有確率	多数の荷電粒子の挙動を扱うため,一個の粒子の運動方程式ではなく,統計力学を用いて粒子群を表現する.粒子の個数に対応する「キャリア密度」を表現するための「状態密度」と「占有確率」について考える.また「有効質量」についても解説する.			
5	半導体の電子構造:キャリア密度の導出と真性キャリア密度	あるエネルギの範囲内にあるキャリアの密度を導出するには,前回導いた式を積分して求める.その式の展開によって導電帯(価電子帯)中の電子(正孔)密度の式を導出する.真性キャリア密度,pn積について考える.前回の講義をよく復習しておくこと.			
6	半導体の電子構造:フェルミ準位	半導体デバイスの動作説明によく用いられる「フェルミ準位」について考える.水面の高さに似て,フェルミ準位も電子がどのエネルギの高さまでいるかを表す量である.予習はpp.20~23をよく読み,わからないところをチェックしておくこと.			
7	半導体の電子構造:これまでのまとめ	これまで出てきた式や現象を使って問題を解き、理解を定着させる。			
8	中間試験	半導体の特徴を,電気的な性質やバンド構造などの観点から説明させる.授業中の重要語句について説明させたり,キャリア密度の導出などを行う.			
9	試験解説	試験解答の解説および学生による学習目標達成度評価を行う.			
10	半導体業界に関する講演会Ⅰ	半導体業界の企業の方や,半導体の研究をされている研究者からの講演を聴講する.			
11	半導体における電気伝導:キャリアの熱運動,ドリフト電流	熱による原子の揺れ動き(格子振動)やキャリアの熱運動,外部電界によるドリフト電流について考える.キャリアの流れで考えたときのオームの法則も導出する.予習はpp.25~28を読むこと.抵抗率について復習しておくこと.			
12	半導体における電気伝導:ホール効果	ドリフト電流と印加磁界によって生じる起電力の関係を説明するホール効果について考え,この効果の測定によって何がわかるかまで発展する.電磁気学のローレンツ力について学習してくること.			
13	半導体における電気伝導:キャリア密度の温度特性	金属と半導体の違いとしてよく表現される抵抗率の温度依存性について,半導体のキャリア密度の温度依存性との関係から考える.予習としてpp.30~31をよく読むこと,金属の抵抗率の温度依存性について調べてくること.			
14	半導体における電気伝導:拡散電流	粒子が拡散する様子を数式で表すとどうなるか,それを電子や正孔に適用した場合に電流がどのように記述できるかについて考える.またアインシュタインの関係式についても触れる.予習はpp.31~33をよく読むこと,電流の定義を復習すること.			
15	半導体における電気伝導:連続の式と拡散方程式	半導体中でのキャリアの生成と消滅や,キャリアの拡散による流れを記述した拡散方程式について考え,p.38の式(2.37)の各項について理解する.半導体の中で重要な役割を演じる「トラップ」についても考える.予習はpp.33~41を読んでおくこと.			
16	半導体業界に関する講演会II	半導体業界の企業の方や,半導体の研究をされている研究者からの講演を聴講する.			
17	pn接合:整流性の原理,拡散電位の導出	ダイオードとして用いられる整流作用がなぜ起こるかをエネルギバンド図から考え、電流電圧特性との関連を理解する.また空乏層中の電界分布から拡散電位の式を導出する.予習はpp.45~49をよく読むこと.			
18	pn接合:少数キャリアの注入,拡散方程式による理想特性の導出	理想的なpn接合は電圧印加時に拡散による荷電粒子の流れが起こり,それが過剰少数キャリアとなる.予習としてpp.49~51を読んでおくこと.			
19	pn接合:拡散方程式による理想特性の導出	電圧印加時に理想的なpn接合中に流れる拡散電流を拡散方程式を用いて導出する.2章の拡散方程式を用いてpn接合中の電流を導出する.予習としてpp.52~55を読んで,忘れている式などがあれば1,2章の該当部分を読み直しておくこと.			
20	pn接合:理想特性からのずれ,再結合電流	前回求めたpn接合の理想特性に対して,実際のpn接合の特性がどれだけずれているかを確認し,そのずれの理由を考える.キャリアの生成と再結合について2章のpp.33~40の関連部を復習しておくこと.またpp.56~60をよく読んでおくこと.			
21	pn接合:空乏層の静電容量と幅	pn接合のp形-空乏層-n形という構造はコンデンサと考えられ,静電容量を有している.この静電容量と空乏層幅を導出する. 階段接合や傾斜接合といった接合形態でどう変わるかを確認する.電磁気学のポアソンの方程式を学習しておくこと.			
22	pn接合:空乏層の静電容量と幅	前回の授業で得られた空乏層幅を導出する式などを用いて定量的に評価する.			
23	中間試験	pn接合をエネルギバンド図で説明させたり,拡散電位や空乏層幅などの導出を行う.			
24	試験解説	試験解答の解脱および学生による学習目標達成度評価を行う.			
25	異種材料界面	半導体と金属の接触によって得られる電気特性について学ぶ.予習としてpp.78~82をよく読んでくること.			
26	異種材料界面	前回の続きを行う.pp.86~89をよく読んでくること.			
27	MOS構造の特性	MOS-FETの原理となるMOS構造について考え、蓄積、空乏、反転状態のエネルギバンド図を描く、またそのときの静電容量の変化や周波数特性についても考える.予習としてpp.89~94をよく読んでくること.			
28	MOS構造の特性およびMOS-FET	前回の続きおよびMOS-FETの構造と原理について考える.MOS-FETの電流-電圧特性についてnチャネルやpチャネルなどの違いでどのように変わるかなどについて考える.予習としてpp.122~128をよく読んでくること.			
29	MOS-FET:MOS-FETの短チャネル効果	MOS-FETの前回の続きとMOS-FETの短チャネル効果について考える.予習としてpp.129~131をよく読んでくること.			
30	MOS-FET:短チャネル効果とSOI構造,FinFET	MOSトランジスタの短チャネル効果とそれを防ぐトランジスタの構造について考える.予習および復習としてpp.129~131をよく読んでくること.			
備考	前期,後期ともに中間試験および定期試験を実施する. 本科目の修得には,60 時間の授業の受講と30 時間の事前	事後の自己学習が必要である.			