	1V 🖂	Net. N.C. T. (2.5. 2)			神戸市立工業局等専門字校 2025年度ジラハス	
	科 目 ————	数学 I (Mathematics I)				
担当教員		吉村 弥子 教授				
対象学年等		電子工学科·3年·通年·必修·4単位【講義】(学修単位I)				
学習·教育目標		, ,				
概	授業の 要と方針	理工学系の基礎となるテイラー展開,偏微分,重積分,微分方程式について講義する.概念の理解に重点をおき,基本問題 ,応用問題の演習で基礎を固め,さらに応用力をつけて運用能力を高める.				
		到 達 目 標	達成	度	到達目標別の評価方法と基準	
1	【A1】ロピタル 値などの計算	の定理,テイラーの定理などを使って,関数の極限値,近似ができる.			ロピタルの定理,テイラーの定理などを使って,関数の極限値,近似値などの計算ができるかを試験,レポート,小テストで評価する.	
2	【A1】分数関数 きる.	女,三角関数などの様々な関数の不定積分を求めることがで			分数関数,三角関数などの様々な関数の不定積分を求めることができるかを 試験,レポート,小テストで評価する.	
3	[A1]定積分を使って,面積,体積,曲線の長さが計算できる.				定積分を使って,面積,体積,曲線の長さが計算できるかを試験,レポート,小テストで評価する.	
4	【A1】偏導関数の計算ができ,偏導関数を応用し,極値や条件付き極値を求めることができる.				偏導関数の計算ができ,偏導関数を応用し,極値や条件付き極値を求めることができるかを試験,レポート,小テストで評価する.	
5	[A1]重積分の計算ができる.				重積分の計算ができるかを試験,レポート,小テストで評価する.	
6	【A1】微分方程式とその解について理解し,1階微分方程式,2階微分方程式が解ける.				微分方程式とその解について理解し,1階微分方程式,2階微分方程式が解けるかを試験,レポート,小テストで評価する.	
7						
8						
9						
10						
総合評価		成績は,試験85% レポート2% 小テスト10% 実力試験3% として評価する.試験成績は中間試験と定期試験の平均とする.100点満点で60点以上を合格とする.				
テキスト		「新編 高専の数学3 [第2版・新装版]」:田代 嘉宏 他 編(森北出版) 「改訂版 新版微分積分II演習」:岡本 和夫 監修(実教出版)				
参考書		「改訂版 チャート式 基礎と演習 数学III」:チャート研究所 編著(数研出版) 「改訂版 新版微分積分II」:岡本 和夫 監修(実教出版) 「数研講座シリーズ 大学教養 微分積分」:加藤 文元 著(数研出版) 「大学・高専生のための解法演習 微分積分II」:糸岐 宣昭 他 著(森北出版) 「高専テキストシリーズ 微分積分2 問題集」: 上野 健爾 監修(森北出版)				
関連科目		1,2年の数学I,数学II				
履修上の 注意事項		・時間に余裕がある場合には発展的な話題を扱うこともある・・レポートは夏季休業前,冬季休業前等,適宜課す・・参考書に挙げた書籍は全部揃える必要はない・・4月の最初の授業時に2年時までの数学の内容に関する実力試験を実施し,点数を成績に加味する・・前年度の学年末休業前に課された課題の成績をレポートの成績に加味する・				

	授業計画(数学 I)					
	テーマ	内容(目標・準備など)				
1	曲線の媒介変数方程式、極座標と曲線	媒介変数で表示された曲線の概形を調べる方法を学習する.				
2	不定形の極限値	ロピタルの定理を用いて不定形の極限を求める.				
3	べき級数,高次導関数	べき級数,高次導関数の扱いについて学習する.				
4	テイラーの定理	テイラー展開,マクローリン展開を使って関数の近似式を求める.				
5	無理関数などの不定積分	無理関数などの不定積分について学習する.				
6	分数関数の不定積分	分数関数の不定積分について学習する.				
7	sin x,cos x の分数関数の不定積分	sin x,cos x を含む分数関数の不定積分について学習する.				
8	中間試験	中間試験を行う.				
9	試験返却,和の極限としての定積分	中間試験の答案を返却し,解答を解説する.和の極限としての定積分を理解し,和の極限を定積分に直して計算する.				
10	面積·体積	定積分を使って面積や体積を計算する.				
11	曲線の長さ	定積分を使って曲線の長さを計算する.				
12	広義積分	広義積分について理解し,広義積分を計算する.				
13	2変数関数	2変数関数の概念を理解し,極限値や連続性を調べる.				
14	偏導関数,合成関数の偏導関数	偏導関数について理解し,様々な偏導関数の計算をする.				
15	2変数関数の平均値の定理	2変数関数の平均値の定理を理解し、誤差の評価に利用する.				
16	2変数関数の極大・極小	偏導関数を使って極値の計算をする.				
17	陰関数定理	陰関数定理について理解し、極値や特異点を求める.				
18	条件付き極大・極小	条件付きの関数の極値について理解し,極値を求める.				
19	重積分	重積分について理解し,計算をする.				
20	積分の順序変更	積分順序の変更を理解し,計算をする.				
21	体積	重積分を使って体積を求める.				
22	極座標による重積分	極座標を使って重積分を求める.				
23	中間試験	中間試験を行う.				
24	試験返却,微分方程式と解	中間試験の答案を返却し,解答を解説する.微分方程式と一般解,特殊解,特異解について理解する.				
25	変数分離形	変数分離形の微分方程式を解く.				
26	同次形	同次形の微分方程式を解く.				
27	線形微分方程式,完全微分形	線形微分方程式、完全微分形の微分方程式を解く				
28	2階微分方程式	2階微分方程式を1階微分方程式に直して解く.				
29	定数係数2階線形微分方程式	定数係数2階線形微分方程式を解く.				
30	演習	微分方程式を解く演習をする.				
備考	前期,後期ともに中間試験および定期試験を実施する.					