科目	電気回路I (Electric Circuit I)		伸尸巾立上業局寺専門字校 2011年度シフハス	
担当教員	津吉 彰 教授			
対象学年等	 電気工学科・2年・通年・必修・2単位 (^s	学修単位	71)	
学習·教育目標				
授業の 概要と方針	三角関数を復習し,微分と積分の必要最小限の		学び,この知識を用いて抵抗,コイル,コンデンサの正弦 ついて学び,複素数で表した場合について学ぶ.	
	到達目標	達成度	到達目標毎の評価方法と基準	
	流を三角関数で表すことができ,微分の簡単な計算ができ ルを用いた回路の電圧と電流の関係を理解する.		交流の三角関数表現,微分の簡単な計算,抵抗とコイルを用いた回路の電圧と電流の関係を理解していることを前期中間試験で評価する.	
	分の簡単な計算ができ,抵抗とコンデンサを用いた回路の 関係を理解し,直列共振と並列共振の回路について理解す		積分の計算,直列共振や並列共振回路について理解しているかを前期定期試験で評価する.	
3 子のインピー ーダンスの計	【A4-E1】複素数の基礎的な計算ができ,複素数を用いて交流と回路素子のインピーダンスを表すことができる.また直列回路についてインピーダンスの計算ができる.		複素数を用いてインピーダンスなどの表現ができ,計算できることを後期中間試験で評価する.	
て並列回路に	【A4-E1】交流ブリッジの平衡条件を求めることができ、複素数を用いて並列回路におけるインピーダンスと電圧と電流の関係を考えることができる.実効値と平均値の計算ができ、複素電力と力率について理解する.		平衡条件の導出,実効値と平均値の計算,複素電力と力率の計算ができ ,理解できているかを後期定期試験で評価する.	
【A4-E1】1年 5 ける.	【A4-E1】1年で習った直流回路の内容をよく理解し,標準的な問題が解ける.		基本的な直流回路の問題の解答状況を定期試験とレポートで評価する.	
			定期試験とレポートで電圧電流の位相,大きさをフェーザ法で計算でき,ベクトルで表示できることを評価する.	
9 10				
総合評価	成績は,試験80% レポート10% 小テスト1 合格とする.	الح %0	・ して評価する.総合成績が100点満点で60点以上のものを	
テキスト	スト 「交流理論」:東京電機大学編(東京電機大学出版局),プリント			
参考書	「絵とき電気回路」 岩沢孝治,中村征壽共著,オーム社			
関連科目	数学,基礎電気工学,電気数学,電気回路II,電気磁気学I			
履修上の 関数,微分・積分,ベクトルおよび複素数の計算が出来ることが必要である.授業中に全てを身につけるように注意事項 心がけること.宿題のレポート未提出者は再試験の受験資格を失うので,宿題は必ず提出するようにすること				

	授業計画 1 (電気回路I)			
週	テーマ	内容(目標, 準備など)		
1	三角関数の総復習	1年で学んだ三角関数の概念と様々な公式をまとめ復習する.		
2	交流波形の式と位相の概念	交流の電圧,電流を三角関数を用いて表すことを学び,位相の概念について理解を深める.		
3	微分の概要	交流回路で不可欠な微分について,大雑把に全体を把握し,計算できるようになる.		
4	抵抗とコイルのV-I特性	抵抗とコイルについて,電流と電圧の関係を学ぶ.		
5	RL直列回路	RL直列回路における電圧,電流の関係について学ぶ.		
6	RL並列回路	RL並列回路における電圧,電流の関係について学ぶ.		
7	演習問題	これまでの全体をまとめるとともに復習する.		
8	中間試験	1~7までの内容についての試験を行う.		
9	中間試験結果の解説	中間試験の内容について個別に解説する.		
10	積分の概要	交流理論で不可欠な積分について大雑把に把握するとともに計算ができるようになる.		
11	コンデンサのV-I特性	コンデンサの電圧電流特性について定量的に学ぶ.		
12	RC直列回路と並列回路	RCの直列回路,並列回路において,その電圧,電流の関係について学ぶ.		
13	RLC直列回路	RLC直列回路の電圧電流特性について学び,直列共振の現象について理解する.		
14	RLC並列回路	RLC並列回路の電圧電流特性について学び,並列共振の現象について理解する.		
15	演習	これまでに学んだ事柄をまとめ,直流回路と比較しながら復習する.		
16	前期定期試験の解説	前期定期試験の内容について個別に解説する.		
17	複素数	複素数について,その概念と計算方法について基礎からまとめて学ぶ.その際,直交座標と極座標の概念についえ 学ぶ.		
18	交流の複素表記,抵抗,コイル,コンデンサのV-l特性	抵抗,コイル,コンデンサのVI特性を複素表記を用いて表し,複素インピーダンスの概念について学ぶ.		
19:	RLおよびRC直列回路	交流を複素数を用いて表す方法について学ぶ、RLおよびRC直列回路について電圧電流特性を複素表記で学ぶ、		
20	RLC直列回路とベクトル軌跡	RLC直列回路の電圧電流特性を複素表記で学び、インピーダンス平面でのベクトル軌跡を学ぶ .		
21	複素表記の合成インピーダンスとアドミタンス	複素インピーダンス,アドミタンスについて学び,合成インピーダンスの計算について慣れる.		
22	演習	今までに学んだ事柄をまとめて復習する.		
23	中間試験	16~21までについて中間試験を行う.		
24	中間試験の解説	中間試験の内容について個別に解説する.		
25	RLおよびRC並列回路	RLおよびRC並列回路について電圧電流特性を複素表記で学ぶ.		
26	RLC並列回路とベクトル軌跡	RLC並列回路の電圧電流特性を複素表記で学び、インピーダンス平面とアドミタンス平面でのベクトル軌跡を学ぶ・		
27	複素インピーダンスを用いた回路解析,交流ブリッジ	キルヒホッフの式を複素数で立てることにより,交流回路の解析ができることを理解し,応用としてRCフィルタ回路について詳しく学ぶ.交流ブリッジの平衡条件の計算を身につける.		
28	電力,実効値,平均値	抵抗,コイル,コンデンサにおける消費電力を計算すると共に,実効値,平均値等の概念を学ぶ.		
29	複素電力と力率	電力の複素表記について学び、力率の概念を理解する・		
	演習	これまでの復習とする.		
備考	前期,後期ともに中間試験および定期試験を実	E施する.		