科目		電子デバイス (Electronic Devices)				
担当教員		西 敬生 准教授				
対象学年等		電子工学科・3年・通年・必修・2単位 (学修単位)				
学習·教育目標		A4-D2(100%)				
授業の 概要と方針		我々の生活のいたるところで活躍する電子デバイスの開発の歴史や,動作原理,その構造について解説する.特に,どの部品がどんな役割を果たすのか,実際の部品と特性が合致することを目指す.				
		到 達 目 標	達成度	到達目標毎の評価方法と基準		
+		妾合ダイオードを始め種々のダイオードの簡単な原理や役 明することができる.		種々のダイオードの動作原理について説明する問題を前期中間試験で出 題し評価する.		
2		イポーラトランジスタやFET , サイリスタなどの簡単な原 いて説明することができる .		バイポーラトランジスタやFET,サイリスタなどのの動作原理について説明する問題を前期定期試験で出題し評価する.		
3		算体を用いた発光素子や受光素子など光デバイスの原理や て簡単に説明できる.		発光ダイオードなどの光デバイスの原理や使い方についてレポートや , 説明問題を後期中間試験で出題し評価する .		
4	【A4-D2】集積回路の長所について簡単に説明できる.			集積回路が果たす役割について説明させる問題を学年末定期試験で出題 し評価する .		
5	【A4-D2】DRAMやフラッシュメモリといった半導体メモリについて紹介できる.			各種メモリに関する動作原理,特にDRAMやフラッシュメモリについて 説明させる問題を学年末定期試験で出題し評価する.		
6 7 8						
10						
· · · · · · · · · · · · · · · · · · ·		成績は,試験90% レポート10% として評価する.試験成績は4回の試験の平均とする.総合評価においては 100点満点中60点以上を合格とする.				
テキスト		「半導体デバイス入門」大豆生田利章(電気書院)				
参考書		「電子デバイス工学」古川静二郎,萩田陽一郎,浅野種正(森北出版) 「半導体デバイス」松波弘之,吉本昌広(共立出版) 「半導体・ICのすべて」菊地正典,高山洋一郎,鈴木俊一(電波新聞社) 「絵から学ぶ半導体デバイス工学」谷口研二,宇野重康(昭晃堂)				
関連科目		半導体工学(4年),光エレクトロニクス(5年),電子応用(5年)				
	修上の E意事項					

<u>}</u> ⊞	授業計画 1 (電子デバイス) 调				
週	電子デバイスとは				
2	日本メーカーと世界シェア	主に半導体業界を中心に、どんな業種があるか、どんな企業があるのかを紹介する。また日本メーカーの歴史や世界シェア、ランキングについても紹介する。			
3	半導体について	電子デバイスの主役であるダイオードやトランジスタは半導体という物質を原料に作られる.この半導体とは何かについて説明する.			
4	pn接合	p形半導体とn形半導体を接合したpn接合の特徴や整流性を示す原理について説明する.			
5	pn接合ダイオードの仕組みと働き	pn接合のように整流性をもったデバイスであるダイオードの種類や特性,使い方などについて説明する.			
6	種々のダイオードI	種々のダイオードの紹介およびその特性について解説する.			
7	種々のダイオードII	前回の続きで種々のダイオードの紹介およびその特性について解説する.			
8	中間試験	電子デバイスの意味や分類,半導体やpn接合,種々のダイオードについて説明させる問題を出す.			
9	中間試験の解答,解説	中間試験の解答と解説および学生による学習目標達成度評価を行う.			
10	バイポーラトランジスタI	半導体のp形とn形をnpnやpnpのように接合して作ったバイポーラトランジスタの動作原理について説明する.			
11	バイポーラトランジスタII	前回に引き続いてバイポーラトランジスタについて解説する.			
12	電界効果型トランジスタ(FET)I	FETの種類と構造,動作原理について説明する.			
13	電界効果型トランジスタ(FET)II	MOS電界効果型トランジスタについて解説する.			
14	サイリスタI	pn接合が多段に形成された電力制御用デバイスである種々のサイリスタの紹介とその動作原理や構造について解説する.			
15	サイリスタII	前回に引き続きサイリスタについて解説する.			
16	定期試験解答,解説	試験問題に関する解答,解説および学生による学習目標達成度評価を行う.			
17	半導体光物性	半導体へ光が入射した時に生じる現象や効果について,また半導体からの発光について説明する.			
18	受光素子I	フォトダイオードやフォトトランジスタなど光センサーとして用いられるデバイスの構造や種類について説明する.			
19	受光素子Ⅱ	前回に引き続き,受光素子の原理について解説する.			
20	受光素子Ⅲ	前回に引き続き,受光素子の原理について解説する.			
21	発光素子I	至る所で目にするようになった発光ダイオード(LED)について,動作原理,発光色や使われている材料や構造に関いて解説する.			
22	発光素子II	前回からの続きで,LEDなどの発光素子の原理について説明する.			
23	中間試験	これまで説明した,受光素子および発光素子の原理について説明させる問題を出題する.			
24	中間試験の解答,解説	中間試験の解答,解説および学生による学習目標達成度評価を行う.			
25	集積回路の概要	集積回路(IC)の必然性や役割について説明するとともに,半導体集積回路の例を一部紹介する.			
	論理回路の実現し	NOTやAND, ORなど論理回路を集積回路でどのように実現しているのかを説明する.			
27	論理回路の実現!!	前回の続きで論理回路の実現について説明する.			
28	半導体メモリの概要	RAMとROMに大別される半導体メモリの種類や用途について説明する.			
29	DRAM	今や半導体産業,電子デバイスの代表的な製品であるDRAMの構造や記憶原理について説明する.			
	フラッシュメモリ	音楽プレーヤーや携帯電話の普及で非常に身近になった半導体メモリであるフラッシュメモリについてその構造や記憶原理について説明する.			
備考	前期,後期ともに中間試験および定期	試験を実施する.			